
Traces of the reduced density operators revisited: closed-form formulae

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 3219

(http://iopscience.iop.org/0305-4470/30/9/027)

Download details:

IP Address: 171.66.16.121

The article was downloaded on 02/06/2010 at 06:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 3219–3227. Printed in the UK PII: S0305-4470(97)78130-7

Traces of the reduced density operators revisited:
closed-form formulae

Josep Planelles† and Jacek Karwowski‡
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Abstract. Closed-form expressions for traces of theqth-order reduced density operators,q-
RDOs, and symmetry-adaptedq-RDOs calculated in anN -electron and spin-adapted subspace
of aK-orbital Fock space are derived. The asymptotic form of the expression for traces of the
q-RDOs, corresponding toK � N andK � N � q limits, is discussed in detail. Several
identities fulfilled by some quantities related to the traces are derived.

1. Introduction

The qth-order reduced density operators (q-RDOs) [1] (also referred to as the excitation
operators [2], the replacement operators [3] and, in the case ofq = 1, the unitary group
generators [4]) and their traces belong to the most helpful tools in designing algorithms
for the evaluation of matrix elements and averages in many areas of theN -electron system
theory, such as for instance: in the statistical theory of electronic spectra [5], in the theory
of spin-adapted reduced Hamiltonians [6], in some computational approaches [7], in the
statistical theory of nuclear spectra [8] and in computational methods of quantum chemistry
[2]. Discussion of some properties of these operators and of their traces calculated in the
N -electron and spin-adapted (i.e. spanned by eigenfunctions of the total spin operatorsŜ2

and Ŝz corresponding to a fixed pair of their eigenvalues,S andM respectively) subspaces
HA(K,N, S) of a K-orbital Fock space may be found in [5], [9–16]. In particular two
relations in which traces ofq-RDOs and traces of symmetry-adaptedq-RDOs are expressed
as linear combinations of traces of the occupation number operators have been reported in
[13] and [14], respectively. The coefficients of these combinations have been determined
through rather complicated recurrence relations. In this paper we present a surprisingly
simple, closed-form formula for the coefficients. As a consequence, several properties of
the traces, in particular in their asymptotic limit ofK � N andK � N � q are also
derived.

2. Traces ofq-RDOs

The trace of aq-RDO inHA(K,N, S) may be expressed as [13]§

Tr(qE12...q
P(12...q)) = ε(P)

t∑
k=0

c
q

k (P)Wq−2k(k) (1)

§ In table 1 of [13]ε(P) is included in the definition ofcqk (P).
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whereP ∈ Sq is a permutation belonging to theq!-element symmetric groupSq , ε(P) = ±1
is its parity,

t =
{

1
2s if s is even
1
2(s − 1) if s is odd

(2)

s is the number of indices affected byP, cqk (P) is aK- andN -independent integer and

Wq(k) = 〈n1n2 . . . nq〉S,N−2k,K−k (3)

denotes a trace of a product of the orbital occupation number operators

n1 · n2 · . . . · nq ≡ qE
12...q
12...q (4)

in HA(K − k,N − 2k, S). This trace may be expressed according to (17) of [12] or (24) of
[9] as

Wq(k) =
[q/2]∑
j=0

Aj(N − 2k, q)
(K − k − q)!
(K − k − j)!D(S,N − 2k − 2j,K − k − j) (5)

where

Aj(N, q) = (−1)j
q!(N − 2j)!

j !(q − 2j)!(N − q)! (6)

and

D(S,N,K) = 2S + 1

K + 1

(
K + 1
N/2− S

)(
K + 1

N/2+ S + 1

)
(7)

is the dimension ofHA(K,N, S).
In this paper we are concerned with properties ofcqk (P) coefficients which, for

simplicity, are referred to asthe c coefficients. In [13] the c coefficients have been
determined using a recurrence procedure, which may be expressed by the following equation

c
q

k (P) = χ [q−k,k]
P −

k−1∑
i=0

c
q

i (P)f
(
q − 2k

2
, q − 2i

)
(8)

whereχ [a,b]
P is the character of the irreducible representation ofSq labelled by a two-row

Young tableau witha boxes in the first row andb boxes in the second row, and

f (x, y) = 2x + 1

y + 1

(
y + 1

1
2y − x

)
. (9)

Let us note that theP-dependence of the coefficientscqk (P) is defined by the appropriate
irrep. characters [13]. Thereforecqk (P) are the same for all permutations belonging to the
same class and (8) may be rewritten as

c
q

k (π) = χ [q−k,k]
π −

k−1∑
i=0

c
q

i (π)f

(
q − 2k

2
, q − 2i

)
(10)

where π is the partition ofq defining the appropriate class ofSq . SinceWq−2k(k) is
P-independent, according to (1), Tr(qE12...q

P(12...q)) also depends on the class ofSq rather than
on a specific permutation.
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3. A closed-form expression for thec coefficients

Let us consider Tr(qE12...q
P(12...q)) with P = QR, whereQ andR commute, i.e. they act on

different sets of indices. The trace does not depend upon the numbers (the orbital labels)
assigned to the orbitals and therefore, without any loss of generality, we may assume
thatQ acts on the firsts indices andR acts on the remainingq − s indices. Since the
product of RDOs without common labels yields an RDO for which the orbital labels are the
collection of the primitive RDOs labels preserving the relative ordering between creation
and annihilation indices, we may write that

Tr(qE12...q
P(12...q)) = Tr(sE12...s

Q(12...s)
q−sEs+1,s+2,...q

R(s+1,s+2,...q)). (11)

The application of the prescription given in [13] to the RDOs on the right-hand side of (11)
transforms the trace on the left-hand side as a linear combination of traces of occupation
number operators

Tr(qE12...q
P(12...q)) = ε(P)

t1∑
m1=0

t2∑
m2=0

csm1
(Q)cq−sm2

(R)Wq−2(m1+m2)(m1+m2) (12)

wheret1 and t2 are defined according to (2).
Let us assumeR = I, whereI is the identity operator. Thent2 = 0 and, sincecq0 = 1,

Tr(qE12...q
P(12...q)) = ε(P)

t1∑
m1=0

csm1
(Q)Wq−2m1(m1). (13)

If we replace in (13) the summation indexm1 by k and remember that in this caseP = Q
then, by comparing (1) and (13), we can see that

c
q

k (P) = csk(P) (14)

i.e. the c coefficients areq-independent. Consequently we shall drop the superfluous
superscript and writeck(P) rather thancqk (P).

Introducing in (12) a new summation indexk = m1 + m2, we transform this equation
into a form which is identical to (1). By comparing the coefficients of the sameWq−2k(k)

in both equations, we get

ck(P) =
t∑

m=0

cm(Q)ck−m(R). (15)

Now, if eitherQ or R is composed of more than one cycle (i.e. may be expressed as a
product of two commuting permutations), then the same procedure may be repeated for
the appropriate coefficients. Proceeding in this way we finally may express an arbitrary
coefficientck(P) as a linear combination of products of the coefficients corresponding to
single cycles. Then, ifP belongs to a classπ of Sq composed ofp cyclesπ1, π2, . . . , πp,
then

ck(P) =
t1,t2,...,tp∑

m1,m2,...,mp

′
cm1(π1)cm2(π2) . . . cmp (πp) (16)

where the prime means that the summation is extended over partitions ofk, i.e. the
summation indices are constrained by the conditionm1+m2+ · · · +mp = k.

As an example, let us calculate the coefficients for the case whenπ = [24], i.e. it is
composed of two cycles:π1 = [2] and π2 = [4]. For all permutationsc0 = 1. The only
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other non-vanishing coefficients for the single cycles are:c1([2]) = −2, c1([4]) = −4 and
c2([4]) = 2. Now, according to (15),

c0([24]) = c0([2])c0([4]) = 1

c1([24]) = c0([2])c1([4])+ c1([2])c0([4]) = −6

c2([24]) = c0([2])c2([4])+ c2([2])c0([4])+ c1([2])c1([4]) = 10

c3([24]) = c0([2])c3([4])+ c3([2])c0([4])+ c1([2])c2([4])+ c2([2])c1([4]) = −4

and the remaining coefficients vanish.
Now let us consider the case ofπ = [1q−nn]. In this caseχ [n]

[n] = 1, χ [n−1,1]
[n] = −1 and

χ
[n−k,k]
[n] = 0 if k > 1. Then, (10) yields

c0([n]) = 1 (17)

c1([n]) = − n

n− 1

(
n− 1

1

)
(18)

and, by induction,

ck([n]) = ε(k) n

n− k
(
n− k
k

)
. (19)

The last equation, combined with (16), gives us a very simple closed-form expression for
an arbitrary coefficientck(P).

4. A generating function for ck[n]

For 06 x 6 1 the following identity is fulfilled

(1− x)n + xn =
(n−δ)/2∑
k=0

ε(k)

(
n− k
k

)
xk(1− x)k (20)

where

δ =
{

0 if n is even

1 if n is odd.
(21)

Let z = x(1− x). Thenx = 1
2 −

√
1
4 − z and (19) and (20) yield

(n−δ)/2∑
k=0

ck([n]) zk =
(

1
2 −

√
1
4 − z

)n
+
(

1
2 +

√
1
4 − z

)n
. (22)

Then the right-hand side of (22) is the generating function for the coefficientsck([n]), i.e.
coefficients associated with one-cycle permutations.

Using (22) one may easily demonstrate several interesting and important summation
properties ofck(P) coefficients. For example, ifz = 1

4 then the right-hand side of (22)
is equal to 21−n. If the classπ to which P belongs is composed ofp cycles, i.e. if
π = [1α12α2 . . . rαr ] with p =∑r

i=1 αi , then from (16) and (22)

t∑
k=0

ck(π) 2−2k =
r∏
i=1

2(1−i)αi = 2p−q (23)
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whereq =∑r
i=1 iαi and t is defined according to (2). By settingz = 1 we have(

1

2
−
√

3

2
i

)n
+
(

1

2
+
√

3

2
i

)n
= 2 cos(60n)

=
{
−2, if n = 3i, i = 1, 2, 3, . . . ,

1, otherwise.
(24)

Therefore if the classπ to which P belongs is composed ofp cycles, we get
2p
∏r
i=1 cos(60i) = (−2)d , whered = α3+ α6+ α9+ · · · =

∑
i α3i , i.e.

t∑
k=0

ck(P) = (−2)d . (25)

5. The low-density limit of q-RDO traces

The case whenK � N is of a special interest and is referred to as the low-density limit
[8, 9]. The closed-form formulae and the summation properties of thec coefficients allow
us to perform a simple derivation of the asymptotic equations for traces ofq-RDOs. Let us
define

R
(q)

SN(P) =
Tr(qE123...q

P(123...q))

Tr(qE123...q
123...q )

(26)

and

rkSN =
Wq−2k(k)

Wq(0)
. (27)

Equations (1), (3), (4) and (26) yield

R
(q)

SN(P) = ε(P)
t∑

k=0

c
q

k (P)rkSN . (28)

If K � m, then(
K

m

)
⇒ Km

m!
. (29)

From this and from (7) one gets that in the limitK � N ,

D(S,N,K)⇒ f (S,N)

N !
KN. (30)

Similarly, (29) and (5) lead to

rkSN ⇒
f (S,N − 2k)

f (S,N)
. (31)

In addition, ifN � k, after some simple algebra we get

rkSN ⇒ 2−2k(1− g2)k (32)

whereg = 2S/N . In particular, ifS/N → 0, i.e. for the low-spin systems,rkSN → 2−2k.
For the high-spin system, i.e. forS/N → 1

2, we haverkSN → δk0. If the traces are calculated
in a space spanned by Slater determinants, alsorkSN = 2−2k [16].

A space ofN -electron eigenfunctions of the square and of the projection of the total
spin operator form a basis for the two-row irrep [a, b] of the symmetric groupSN , with
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a = 1
2N + S and b = 1

2N − S, where S is the total spin quantum number. Then,
g = (a − b)/(a + b) = (a − b)/N and

z = x(1− x) = 1
4(1+ g)(1− g) =

a

N

b

N
(33)

wherex = a/N fulfils the condition 06 x 6 1. From (28), (31), (32), (33) and (13) we
get

R
(q)

SN(P) =
t∑

k=0

ck[π ]zk. (34)

Finally, (20) and (22) and the independent action of the cycles in a permutationP belonging
to the classπ = [1α12α2 . . . rαr ] , yield

R
(q)

SN(P) = ε(P)
r∏
i=1

[( a
N

)i
+
(
b

N

)i]αi
. (35)

6. A closed-form expression for traces of spin-adaptedq-RDOs

The symmetry-adaptedqth-order reduced density operators are defined as [2]

[J ]E
α[µ]
β[ν] =

f (J, q)

q!

∑
P∈Sq

U
q

J (P)µν qEPαβ (36)

wherePα means permutation of the orbitals in the stringα of q orbital labels. Their traces
in anN -electron and spin-adapted subspace of aK-orbital Fock space may be expressed as
[14]

Tr([J ]E
α[µ]
β[ν] ) ≡ Tr(J ;α[µ], β[ν])NK = δ(αβ)Uq

J (P)νµ Tr(J, α)NK (37)

whereδ(αβ) = 1 if β = Pα andδ(αβ) = 0 otherwise;Uq

J (P)νµ is theνµ-matrix element
of theSq irrep labelled byJ , and Tr(J, α)NK = Tr(J ;α[λ], α[λ])NK is λ-independent [14].
The structure of the last equation is similar to that of the Wigner–Eckart theorem. The trace
of a symmetry-adaptedq-RDO is factorized in such a way that all information connected
with specific symmetry properties is carried by a universal coefficient (U

q

J (P)νµ in (37),
the Clebsch–Gordan coefficient in the Wigner–Eckart theorem) while the remaining factor
contains information about the system under consideration (Tr(J, α)NK—the reduced matrix
element).

In the calculation of Tr(J, α)NK , if the angular momentumJ is smaller thanJmax

allowed for a system ofq particles, the freezing relation [13] can be used for removing
from the stringα a singlet-coupled pair of orbitals (i.e. a doubly-occupied orbital or two
singly-occupied orbitals coupled to a singlet). Thus, ifq ′ = 2J < q are the remaining
orbital labels after the freezing, andn = q − q ′, then

Tr(J, α)NK = Tr(J, α′)N−2n,K−n (38)

whereα′ is a string of 2J orbital labels.
The trace Tr(J, α′)N−2n,K−n in HA(K, S,N) may be expressed as [14]

Tr(J, α′)N−2n,K−n =
J−δ∑
i=0

mJi W2J−2i (i + n) (39)

whereδ = 0 if the number of labels (2J ) is even andδ = 1 if 2J is odd;W2J−2i (i + n) is
defined according to (3);mJi are coefficients tabulated in [14]. These coefficients have been
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determined by means of a recurrence procedure, that may be expressed by the following
equation

mJi = ε(i)
i−1∑
j=0

f (J − i, 2J − 2j)mJj (40)

whereε(i) = (−1)i , mJ0 = 1 andf (x, y) is defined according to (9). From (40) we get

mJ0 =
(

2J
0

)
(41)

mJ1 = −
(

2J − 1
1

)
(42)

and, by induction,

mJi = ε(i)
(

2J − i
i

)
. (43)

As an illustration, let us calculate the trace Tr([2]E
123456[µ]
P(123456)[ν])

Tr([2]E
123456[µ]
P(123456)[ν]) = U6

2 (P)νµ Tr(J = 2;α = 123456)NK.

An application of the freezing theorem [13] yields

Tr(J = 2;α = 123456)NK = Tr(J = 2;α = 1234)N−2,K−1.

Now, owing to (39), we may transform the above trace into a linear combination of traces
of the occupation number operators

Tr(J = 2;α = 1234)N−2,K−1 = m2
0W4(0+ 1)+m2

1W2(1+ 1)+m2
2W0(2+ 1).

From (43) we get the coefficients:

m2
0 =

(
4
0

)
= 1

m2
1 = −

(
3
1

)
= −3

m2
2 =

(
2
2

)
= 1

and finally

Tr([2]E
123456[µ]
P(123456)[ν]) = U6

2 (P)νµ(W4(1)− 3W2(2)+W0(3)).

7. Concluding remarks

Studies of an eigenvalue spectrum in which the individual eigenvalues are evaluated either
by diagonalizing the Hamiltonian matrix or by using one of the approximate methods to
estimate the locations of the eigenvalues, which is most useful when one is interested in a
few eigenvalues, become prohibitively inefficient when the number of levels is very large
(as in the case of a confined electron gas or in complex atomic or nuclear spectra). In
such cases some global characteristics of the spectra are needed. They may be derived
from a knowledge of the spectral density distribution moments, closely related to traces of
powers of the Hamiltonian matrix [8]. The set of eigenvalues is treated here as a statistical
ensemble and the resulting approach is often referred to asstatistical spectroscopy. It
is known (see e.g. [5]) that the spectral density distribution moments may be expressed



3226 J Planelles and J Karwowski

as linear combinations of products ofinteraction factors and propagation coefficients.
The interaction factors depend upon the specific form of the interactions and upon the
structure of the one-particle space. They depend neither on the number of particles nor
on the quantum numbers describing the system under consideration. The information
about the number of particles, the total spin and, if applicable, other quantum numbers,
is contained in the propagation coefficients. The propagation coefficients are expressible
in a simple way by traces of RDOs [5]. Therefore, from explicit formulae for the
traces one can deduce how the specific information about the system, contained in the
interaction factors is reshaped when the number of particles and the quantum numbers are
changed.

Explicit formulae for traces of certain kinds of RDOs and of some related operators
(in particular of products of the occupation number operators) have already been published
[9, 12]. Traces of arbritrary RDOs have also been expressed as linear combinations of traces
of products of the occupation number operators [13, 14]. However, in the earlier works
the coefficients in these combinations have been determined through rather complicated
recurrence relations. Equations (16), (19) and (43) of the present paper supply simple
closed-form formulae for these coefficients. The formulae are useful for several reasons.
First they supply a tool for studying the dependence of the spectra on the number of
particles, on the total spin and on other quantum numbers. For example, the results of
section 5 proved to be most useful in exploring the behaviour of spectra in the low-
density limit, i.e. in the case ofK � N � 1 [17]. This analysis, applicable in a
case when the number of electrons is large and when the spectrum is discrete, may be
extended, for example, to describing the spectrum of a spatially confined electron gas.
Second, evaluation of moments given by explicit formulae may be technically easier.
Finally, last but not least, the explicit formulae are appealing because of their unexpected
simplicity.
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